The Synthesis of Dichlorobis(2,2'-bipyridyl)ruthenium(II)

RONALD A. KRAUSE

Department of Chemistry, University of Connecticut, Storrs, Ct. 06268, U.S.A. Received April 21, 1978

A new synthesis of cis- $[Ru(bipy)_2Cl_2]$ is presented, starting from $[Ru(bipy)py_4]^{2+}$. Also, a method for obtaining cis-trans mixtures of [Ru(bi $py)_2Cl_2]$ is described. During conversion of trans- $[Ru(bipy)_2py_2]^{2+}$ to $[Ru(bipy)_2Cl_2]$ isomerization is found to occur.

Introduction

In 1963 Dwyer's group reported the synthesis of $[Ru(bipy)_2Cl_2]$ (bipy = 2,2'-bipyridyl) by the pyrolysis of (bipyH) $[Ru(bipy)Cl_4]$ [1]. It was assumed that the reaction produced only the *cis* isomer. This complex is rather important in that it is the starting point in a number of preparations and undoubtedly will continue to be important considering the current activity in ruthenium(II) chemistry.

We have repeated the Dwyer synthesis a number of times, and while we obtain a complex appearing to be "authentic" it is frequently not possible to reproduce other syntheses using it as a starting material. This has caused us to seek a better route to $[Ru(bi-py)_2Cl_2]$.

Our recent work with $[Ru(bipy)py_4]^{2+}$ [2] (py = pyridine) suggested a different route for this synthesis to us. Furthermore, we were able to prepare both *cis* and *cis-trans* mixtures of $[Ru(bipy)_2Cl_2]$. These results are reported here.

Experimental

Reagents

Unless otherwise specified chemicals were of reagent quality. 2,2'-Bipyridyl was obtained from Aldrich; RuCl₃3H₂O was from J. Bishop & Co.

Measurements

Infrared spectra were obtained on a Perkin-Elmer Model 283. Analyses were by Baron Consulting, Orange, Ct. 06477. cis-Dichlorobisbipyridylruthenium(II), $[Ru(bipy)_2 - Cl_2]$

A stock solution of [Ru(bipy)py₄]²⁺ was prepared as described earlier [2]. Two hundred ml of this solution (from 2.00 g [Ru(bipy)Cl₃] - (earlier incorrectly called [Ru(bipy)Cl₄]) was evaporated to dryness and mixed with 50 ml water, 10 ml ethanol, and 0.86 g bipy. After 2 hr on the steam bath this solution was mixed with 20 ml conc HCl, 5 ml ethanol, and boiled with stirring for 30 minutes. The black solid was isolated by filtration and washed with water; it consists of cis and trans isomers and occasionally a polymeric complex. Addition of the wet complex to 70 ml water, 20 ml ethanol and 4 ml pyridine, followed by 17 hr reflux gave an orange solution of [Ru(bipy)2py2]2+; precipitation of an aliquot of this solution as the perchlorate showed the presence of both isomers (infrared spectrum [2]) but with considerably less trans than present initially. [Caution: these perchlorates can detonate on dry grinding].

The dichloro-complex is again precipitated by adding 30 ml conc HCl and boiling for 1 hr. After isolation it is converted to the bis-pyridine complex again by refluxing for 17 hr in 70 ml water, 20 ml ethanol and 4 ml pyridine. An aliquot of this solution shows essentially none of the *trans*-isomer. Final precipitation of $[Ru(bipy)_2Cl_2]$ is achieved by adding 30 ml conc HCl and boiling for 1 hr; on cooling the product is washed with water and dried *in vacuo* over P₄O₁₀. Yield: 1.78 g (67%). *Anal.*: C, 49.85; H, 3.50; N, 11.82; Cl, 14.26. Calculated for $[Ru(bipy)_2Cl_2]$: C, 49.58; H, 3.33; N, 11.57; Cl, 14.64.

cis-trans-Dichlorobisbipyridylruthenium(II)

trans-[Ru(bipy)₂py₂](ClO₄)₂ [2] (0.40 g) was slurried with Dowex 1-X1 (50–100 mesh, Cl⁻ form) until solution of the insoluble perchlorate was complete. After filtering from the resin the solution of the chloride salt was evaporated to dryness, dissolved in 15 ml water and 5 ml conc HCl and 3 ml ethanol added. After 40 min boiling the solution was cooled and the product washed with water after filtration, and dried *in vacuo* over P₄O₁₀. Yield: 0.21 g (84%). Conversion of a sample to $[Ru(bipy)_2py_2]$ (ClO₄)₂ showed both *cis*- and *trans*-isomers, in equal amounts.

Conversion of trans- $[Ru(bipy)_2py_2]^{2+}$ to cis-isomer

To determine if the repeated cycling through the *bis*-pyridine complex was necessary to achieve isomeric purity an experiment was performed by heating a solution of $[Ru(bipy)_2py_2]^{2^+}$ (from $[Ru(bipy)_{(py)_4}]^{2^+}$ and bipy), removing aliquots periodically, and checking for isomeric composition (infrared). After 30 min on the steam bath more *trans* than *cis* is present. After 5½ hr the characteristic infrared peaks are nearly equal, indicating some small amount of conversion of *trans* to *cis*. However, this was not considered to be synthetically helpful.

Results and Discussion

A new synthesis of cis-Ru(bipy)₂Cl₂] and the cis-trans mixture is presented. Using this preparation we have been successful in reproducing, for example, the literature preparations of [Ru(bipy)₂(NO₂)₂] [3] and [Ru(bipy)₂(CH₃CN)₂](PF₆)₂ [4]. While our attempts at reproducing Dwyer's [Ru(bipy)₂-Cl₂] give a material which does produce [Ru(bipy)₂-py₂]^{2*}, this starting material fails to reproduce the above two complexes. Apparently other workers have encountered similar difficulty [5].

We have not been successful in isolating pure *trans*-[Ru(bipy)₂Cl₂]. However, the *cis-trans* mixture may be useful for giving separable *cis-trans* mixtures of other complexes. Unfortunately, the cleanest *cistrans* mixture appears to be formed in the reaction starting with pure *trans*-[Ru(bipy)₂py₂](ClO₄)₂. This procedure is a bit more laborious.

If $[Ru(bipy)_2Cl_2]$ is isolated from the $[Ru(bipy)_2-py_2]^{2^+}$ solution without going through the reconversion to $[Ru(bipy)_2py_2]^{2^+}$ the product is contaminated by a residue. Dissolving crude $[Ru(bipy)_2-Cl_2]$ in hot water leaves a residue (*ca.* 30%) which analyses as a polymer $(Ru_3(bipy)_8Cl_8)$. This residue will react with pyridine to produce $[Ru(bipy)_2-py_2]^{2^+}$ (primarily *cis*) and hence it does not detract from the overall yield in going through the recommended three cycles. But it could interfere in subsequent work if not removed.

Isomerization of *trans*-[Ru(bipy)₂Cl₂] appears to occur in the treatment with hydrochloric acid. If $[Ru(bipy)_2py_2]^{2^+}$ is held on the steam bath for six hours very little isomerization occurs, while pure *trans*-[Ru(bipy)_2py_2]^{2^+} quickly gives the *cis*-*trans* mixture on heating with hydrochloric acid. This isomerization probably occurs through a protonated seven coordinate intermediate, the proton bonding to a filled t_{2g} orbital.

In this work we have extensively utilized the characteristic difference in the infrared spectra of

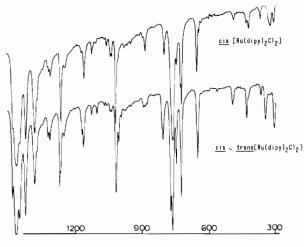


Figure.

the cis- and trans-isomers of $[Ru(bipy)_2py_2](ClO_4)_2$ [2]. We have found this to be a useful analytical technique for establishing the presence of isomers or for determining structure in a few situations. In the cis-complex the pyridine ring mode appears at 706 cm⁻¹, while in the trans it appears at 698 cm⁻¹. As would be inferred from all previous work, the Dwyer preparation of $[Ru(bipy)_2Cl_2]$ leads to $[Ru-(bipy)_2py_2](ClO_4)_2$ which is exclusively cis.

The infrared spectra of cis-[Ru(bipy)₂Cl₂] and the cis-trans mixture are shown in the Figure. A few additional bands in the mixture we attribute to the trans-isomer. Perhaps the most important differences are: a) splitting of the 760 cm⁻¹ band, trans at 767, cis at 759 with higher energy shoulders; b) splitting of the 800 cm⁻¹ band, trans at 807, cis at 800; c) the trans appears to have a peak at 342 cm⁻¹, while the cis has one at 322.

One should be able to identify the *trans* isomer, or detect it in mixtures by means of the infrared spectrum.

Acknowledgement

We wish to thank the University of Connecticut Research Foundation for financial support of this work. And we are indebted to Fru Kirsten Krause for valuable experimental assistance.

References

- 1 F. P. Dwyer, H. A. Goodwin and E. C. Gyarfas, Aust. J. Chem., 16, 544 (1963).
- 2 R. A. Krause, Inorg. Chim. Acta, 22, 209 (1977).
- 3 J. B. Godwin and T. J. Meyer, Inorg. Chem., 10, 471 (1971).
- 4 G. M. Brown, R. W. Callahan and T. J. Meyer, Inorg. Chem., 14, 1915 (1975).
- 5 M. Mukaida, M. Yoneda and T. Nomura, Bull. Chem. Soc. Japan, 50, 3053 (1977).